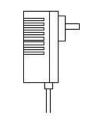

测微计显示盒说明书

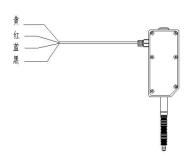
一. 功能特点


- 六位数码管显示,可显示测微计位移数据
- 预设上下公差数据,三个 LED 灯指示公差比较的结果
- 公差比较结果可输出,能驱动外部指示灯和继电器
- 可设定初始值,把清零位置直接显示为工件标准值
- 外部端口清零功能
- 外部端口控制数据锁定功能
- 外部端口控制公差结果输出功能,控制公差结果在正确的位置输出
- 移动方向反向功能,可使推动测杆时数据变小
- 声音提示可选择不同状态,可选择超差时声音报警或合格时声音报警
- 自动工件检测到位判断功能,开启此功能后,当测头接触到工件且稳定停留 一段时间后,才输出公差判断结果
- 具有测微计数据输出功能,串口输出波特率等参数可通过按键修改

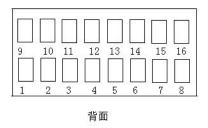
一. 产品内容介绍

● 显示盒 型号 5011-002

电源12V 电源



● 电源转接线

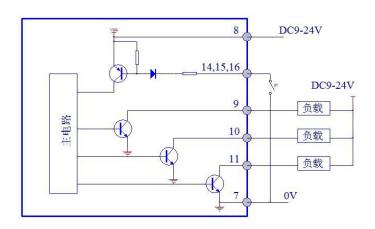


● 可接测微计类型

连接显示盒的测微计采用引线型即 5001-141A 和 5001-341A, 引线图如下,和显示盒的接线方式,请参考引脚功能说明表

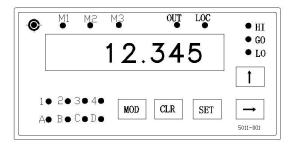
二.显示盒引脚说明

1. 引脚功能说明


引脚编号	名称	引脚编号	名称
1	测微计电源输出正	9	HI (超上差输出)
2	测微计电源输出地	10	GO (合格输出)
3	测微计数据口 OUT	11	LO (超下差输出)
4	测微计数据口 IN	12	——
5	数据转发口(RXD)	13	CONFIRM(外部确认)
6	数据转发口(TXD)	14	CLR(外部清零)
7	电源地	15	OUTCLT(输出控制)
8	电源正	16	LOCK(锁定)

2. 引脚 1 到 4 接测微计,请按正确的颜色编号来连接

显示盒引脚	测微计引线颜色
1	黄
2	红
3	蓝
4	黑


3. 引脚 7 和 8 接电源转接线, 7 脚接黑色, 8 脚接红色 把 12V 电源插到电源转接线的插口上, 就可以给显示盒供电

- 4. 引脚 5 和 6 是数据转发口,数据按 RS232 串口模式发送,5 脚是串口输入与电脑 9 针串口 PIN3 相连,6 脚串口输出与串口 PIN2 相连,输出协议参见"七.显示盒数据输出协议"。
- 5. 短路 13 脚(CONFIRM)和 7 脚(地)可以确认当前数据向上位机发送
- 6. 短路 14 脚(CLR)和7脚(地)可以使数据清零
- 7. 短路 15 脚(OUTCLT)和 7 脚(地)可以关闭公差结果输出
- 8. 短路 16 脚(LOCK)和 7 脚(地)可以锁定测微计的显示数据
- 9. 公差输出口为集电极开路模式,驱动电流 100MA
- 10. 公差设置方法请参见 6 说明
- 11 显示盒输入输出 I/O 口电路图如下

三. 显示盒使用说明

1. 面板说明

五个按键:

【MOD】 模式按键【CLR】 清零按键【SET】 设置按键【→】 移动按键

【↑】 增加按键/蜂鸣器控制

LED 指示灯

【HI】 超上差,不合格

【GO】 产品合格,在公差带内

【LO】 超下差,不合格

【M1】 蜂鸣器状态指示

【M2】 自动检测工件状态指示

【M3】 设置状态指示

【LOC】 数据锁定状态

【OUT】 公差结果输出状态

2. 操作说明

2.1 数据显示:

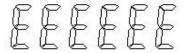
推动测微计显示盒数码管显示移动距离,单位为毫米,最小分辨率为1微米,接上百分测微计时最后一位一直显示0.

2.2 数据清零:

按下【CLR】键可以使显示数据清 0,在有零点预设情况下显示预设值。

- 2.3 公差及预设值输入:
- ●讲入设置状态

按下【SET】键,"M3"指示灯亮,表示为公差设置模式,数字最高位和"LO"指示灯都闪动,数字闪动表示可以被修改,"LO"指示灯闪动表示现在设置的是下公差

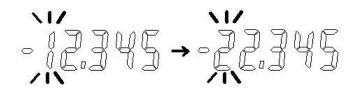


● 切换设置数据类型

按下【MOD】键,"LO"灯、"HI"灯和"GO"灯依次循环闪动,"LO"表示设置下公差;"HI"灯表示设置上公差;"GO"灯表示设置零点预设值,可设置清零点的偏移量。

预设值是在零点基础上增加固定数值,每次清零时,都会显示该数值,如果用户在清零的过程中,总是回不到零,请检查一下是否设置了预设值。预设值的用法是,用户把预设值设置为标准工件的实际尺寸,当用户用标准工件来校准时,按下清零键,这是就会显示标准值,以后测量其他工件的时候就会显示每个工件的实际尺寸,而不是偏差值。

设置完上公差后,自动比较上下公差的大小,下公差应该小于上公差,如果有错误出 现错误提醒,见下图


显示出错信息后,自动重新回到上公差设置状态。

● 修改设置数据

在上述三个设置状态,如果是最高位闪动,按下【↑】键,则在"0~9"和"一"之间切换,"一"表示可以设置负数。

按下【→】键,闪烁位右移一位,可不断循环,再按下【↑】键,可以使闪动位置的数据加一。

在设置状态下长按【CLR】键可清零当前设置值。设置数据范围为-99~999。

● 退出设置

设置结束后,按下【SET】键,"M3"指示灯灭,退出公差设置状态并保存所设置的数据。如果不想保存当前设置的数据,则短按【CLR】键退出公差设置状态。

2.4 蜂鸣功能控制

"M1"指示灯表示蜂鸣器报警功能是否打开,如果"M1"灯点亮,表示当测量数据超差时,蜂鸣器可以鸣叫,"M1"熄灭时表示蜂鸣器报警功能关闭。在非设置状态下,按【↑】键可以控制报警功能是否打开;此设置有掉电记忆功能。

2.5 报警条件反转

非设置状态下长按【↑】键,可切换是否反转报警功能,"AL-nG"或 "AL-Go"符号会闪动两秒钟,"AL-nG"表示产品超差后才声音报警,"AL-Go"表示产品 OK 后才声音报警;此设置有掉电记忆功能。

2.6 方向反转

在非设置状态下和非自动模式下长按【→】键,可切换方向,"Add"或 "dEC"符号会闪动两秒钟,"Add"表示正向,"dEC"表示反向,此设置有掉电记忆功能。

2.7 自动检测

非设置状态下短按【MOD】键进入自动检测功能,此时"M2"指示灯亮,显示盒将在测微计接触被测量物体后,数据保持一段时间稳定后才会输出公差比较结果,主要用于自动判断被测量物体是否到位,提高检测效率;此设置有掉电记忆功能。

再次短按【MOD】键退出自动检测功能,"M2"指示灯灭。

由于普通型测微计和气缸型测微计的起始点不一样,需要设置起始点模式,通过在自动检测模式下长按【→】键进行切换,"LLL"符号显示时为普通型测微计,"HHH"符号显示时为气缸型测微计模式:出厂默认为普通型测微计模式。

当"M2"指示灯点亮时,长按【SET】键进入自动设置,此时"M2"指示灯开始闪,第 1 位显示序号,"1"为稳定范围(0.005~0.05mm),"2"为稳定输出延时(0.2~5 秒),短按【MOD】键可以切换序号,最后 4 位显示待设置的参数,短按【↑】修改参数,设置完成后短按【SET】键保存退出。

2.8 串口设置

外部引脚 5、6、7 为串口 RS232 输出口

非设置状态下长按【MOD】键进入串口设置状态,此时"M3"指示灯亮,左边闪动的 5个数字是波特率,最后 1 个数字是停止位,短按【→】键可以切换闪动状态,短按【↑】键更改参数;

波特率可设置参数: 38400、19200、9600、4800;

停止位奇偶校验设置:显示在1,2,E,o四种状态切换

- 1: 1个停止位无校验
- 2: 2个停止位无校验
- E: 1个停止位 偶校验
- o: 1个停止位 奇校验

设置完成后短按【SET】键保存当前设置数据并退出;如果不想保存当前设置的数据,则短按【CLR】键退出公差设置状态。

3. 外部输入控制

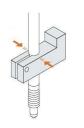
外部引脚 13、14、15、16 为显示盒外部控制输入口

- 13 脚(CONFIRM)为外部确认开关,当输入低电平时(或和电源地短路),当前数据被确认并通过串口发送到上位机;
 - 14 脚(CLR)为清零口, 当输入低电平时(或和电源地短路), 数据被清零。
- 15 脚(OUTCLT)为公差比较结果输出控制脚,当输入低电平时,公差结果不输出,此时"OUT"指示灯灭。当测微计还没稳定接触到零件时,用户可以通过该控制脚使公差判断结果不输出,避免误动作。
- 16 脚(LOCK)为数据锁定键,当输入地电平时(或与电源地短路),测微计输入的数据被锁定,此时"LOC"指示灯闪动。当测微计稳定接触到工件上时,可以通过这个控制脚把当时的数据锁定,即使测微计挪开,数据还保持。

15 脚和 16 脚配合 PLC 使用,可以非常方便的组成一个智能筛选控制系统。

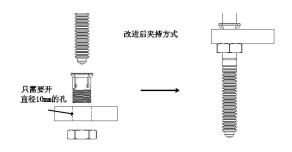
五. 产品详细参数

1. 显示盒


	特征参数		
型号	5011-002		
工作电压	9-24V		
工作电流	小于 200mA		
数据位数	六位		
连接测微计	接引线型测微计 例如: 5001-141A 5001-341A		
控制输出	公差比较结果三个状态输出(超上差,合格,超下差)		
输出驱动能力	100mA		
控制输入	外部清零, 外部锁定, 外部确认		
尺寸 (mm)	95*47*111		

2. 测微计

型号	CW-141	CW-341	CW-141A	CW-341A
检测系统	容栅测量系统,玻璃材料传感器			
测量范围	12 mm			
分辨率	10um	1um	10um	1um
重复定位精度	10um	1um	10um	1um
全程精度	20um	3um	20um	3um
工作电压	5V			
工作电流	<18mA			
测量力	1.2N			
数据更新速度	10ms(100 次/S)			
外壳保护等级	IP67(带防尘套)			
使用寿命	反复测量 1000 万次(保证精度)			
出线方式	DB9 针	DB9 针	四芯出线	四芯出线
引线长度	2m			
尺寸	149*36*19mm 夹持位置直径 8mm			


六. 测微计夹持方式

1. 采用传统量表的夹持方式

2. 采用本公司提供的锁紧夹套(选配件)

传统的量表架夹持是两个方向夹紧,夹持效果不太好,用力过大会损坏测微计,我们提供 的夹套是多方向夹紧,既牢固又安全。

七. 显示盒数据输出协议

- 1. 数据帧格式:
- MODBUS RTU 模式
- 通讯参数:波特率 38400, 19200, 9600, 4800

- 数据帧: 1个起始位,8个数据位,奇或偶校验以及无校验,1个或2个停止位
- 出厂默认值:波特率 38400,1 个起始位,8 个数据位,无校验,2 个停止位
- MODBUS 设备地址为 1
- MODBUS 数据起始地址为 0,数据存放于地址 0 和 1 中
- 采用 MODBUS 0X03 读取命令,
- 用 PLC 读取时,数据地址则为 40001 和 40002

2. 读测微计数据

200 1871 324h						
主机查询命令		显示盒回应数据				
01 03 00 00 00 02 C4 0B 01 03 04		01 03 04 01 00 12 3	04 01 00 12 35 37 78			
地址码	01H	地址码		01H		
功能码	03H	功能码	03H			
访问寄存器首地址	00Н	数据字节长度	04H			
	00H	数据字1高8位	01H	测微计	标志位	
数据字长度	00H	数据字1低8位	00H	数据		
	02H	数据字2高8位	12H		测量数据	
CRC(低8位)	C4H	数据字2低8位	35H		(十六进	
					制)	
CRC(高8位)	ОВН	CRC (低 8 位)	37H			
		CRC(高 8 位)		78H		

说明:

- 1) 上面主机与测微计通讯的举例,主机发出8个字节取数命令,测微计回应9个字节数据,高位在前,蓝色部分为测微计测量数据。
- 2) 测量数据为 4 个字节,第一个字节为符号位,代表正负号,第 3 和第 4 字节为十六进制测量数据,分辩率为 1um。
- 3) 案例中的测量数据转成十进制分别为: 4661, 由于符号位为 01H, 表示为负数, 且分辨率为 1um, 所以实际位移长度为-4.661mm
- 4) 本机 CRC 效验码采用为 16 位 CRC 效验码,多项式为 X^16+X^15+X^2+1, 查表算法举 例见附录
- 5) 当数据被外部确认时,测微计响应数据的第 4 个字节的 Bit3 位置 1,如上面的数据会变成: 01 83 04 01 00 12 35 28 B8

3. 测微计清零

主机清零命令		显示盒回应数据		
01 06 08 00 AB 56	5 74 A4	01 06 08 00 AB 56 74	A4	
地址码	01H	地址码 01H		

功能码	06H	功能码	06H
访问寄存器首	08H	寄存器首地址	08H
地址	00H		00H
清零命令符	АВН	清零命令符	АВН
	56H		56H
CRC (低 8 位)	74H	CRC (低 8 位)	74H
CRC(高8位)	A4H	CRC(高 8 位)	A4H

- 1) 此命令可把测微计清零。
- 2)本机 CRC 效验码采用为 16 位 CRC 效验码,多项式为 $X^16+X^15+X^2+1$,查表算 法举例见附录

附录一:CRC 算法举例

```
unsigned short CRC(unsigned char frame[], int n)

//数组 frame 是 CRC 校验的对象, n 是要校验的字节数
{

    int i, j;
    unsigned short crc, flag;
    crc=0xffff;
    for(i=0;i<n;i++)
    {

        crc^=frame[i];
        for(j=0;j<8;j++)
        {

            flag=crc&0x0001;
            crc>>=1;
            if(flag)
            {

                crc&=0x7fff;
            crc^=oxa001;
            }
        }
     }

    return(crc);
}
```

注: MODBUS CRC 校验码传输是低位在前,高位在后。